

DGL-KE Documentation

Knowledge graphs (KGs) are data structures that store information about different entities (nodes) and their relations (edges). A common approach of using KGs in various machine learning tasks is to compute knowledge graph embeddings. DGL-KE is a high performance, easy-to-use, and scalable package for learning large-scale knowledge graph embeddings. The package is implemented on the top of Deep Graph Library (DGL) and developers can run DGL-KE on CPU machine, GPU machine, as well as clusters with a set of popular models, including TransE, TransR, RESCAL, DistMult, ComplEx, and RotatE.

[image: _images/dgl_ke_arch.png]

Get started with DGL-KE!

	DGL-KE Documentation

	Installation Guide

	DGL-KE Command Line

	Train Built-in Knowledage Graphs

	Train User-Defined Knowledage Graphs

	Distributed Training on Large Data

Installation Guide

DGL-KE works with both Linux and macOS, and it requires Python version 3.5 or later (Python 3.4 or earlier is not tested). DGL-KE can run on both pytorch and mxnet, please refer the following pages to install pytorch or mxnet.

Pytorch installation [https://pytorch.org/]

MXNet installation [https://mxnet.apache.org/]

Install DGL

DGL-KE is implemented on DGL. You can install DGL using pip:

pip install dgl

or you can install DGL from source:

git clone --recursive https://github.com/dmlc/dgl.git
cd dgl
mkdir build
cd build
cmake ../
make -j4

Install DGL-KE

The fastest way to install DGL-KE is by using pip:

pip install dglke

or you can install DGL-KE from source:

git clone https://github.com/awslabs/dgl-ke.git
cd dgl-ke/python
sudo python3 setup.py install

Have a quick test

Once you install DGL-KE successfully, you can test it by the following command:

dglke_train --model_name TransE_l2 --dataset FB15k --batch_size 1000 --neg_sample_size 200 --hidden_dim 400 \
--gamma 19.9 --lr 0.25 --max_step 500 --log_interval 100 --batch_size_eval 16 --test -adv \
--regularization_coef 1.00E-09 --num_thread 1 --num_proc 8

This command will download the FB15k dataset, train the transE model on that, and save the trained embeddings into the file. You can see the following output at the end of the training:

training takes 37.735950231552124 seconds
-------------- Test result --------------
Test average MRR : 0.47615999491724303
Test average MR : 58.97734929153053
Test average HITS@1 : 0.28428501295051717
Test average HITS@3 : 0.6277276497773865
Test average HITS@10 : 0.775862944592101

testing takes 110.887 seconds

DGL-KE Command Line

DGL-KE provides four commands to users:

dglke_train trains KG embeddings on CPUs or GPUs in a single machine and saves the trained node embeddings and relation embeddings into the file.

dglke_eval reads the pre-trained embeddings and evaluates the embeddings with a link prediction task on the test set. This is a common task used for evaluating the quality of pre-trained KG embeddings.

dglke_partition partitions the given knowledge graph into N parts by the METIS partition algorithm. Different partitions will be stored on different machines in distributed training. You can find more details about the METIS partition algorithm in this link [http://glaros.dtc.umn.edu/gkhome/metis/metis/overview].

dglke_dist_train launches a set of processes in the cluster for distributed training.

Training on Multi-Core

Multi-core processors are very common and widely used in modern computer architecture. DGL-KE is optimized on multi-core processors for the best system performance. The following command will train a transE model on FB15k dataset on a multi-core machine:

dglke_train --model_name TransE_l2 --dataset FB15k --batch_size 1000 --neg_sample_size 200 --hidden_dim 400 \
--gamma 19.9 --lr 0.25 --max_step 3000 --log_interval 100 --batch_size_eval 16 --test -adv \
--regularization_coef 1.00E-09 --num_thread 1 --num_proc 8

--num_proc indicates that we will launch 8 processes in parallel for the training task, and --num_thread indicates that each process will use 1 thread. Typically, num_proc * num_thread is set to <= the number_of _cores of the current machine for the best performance. For example, when the number of processes is the same as the number of CPU cores, a user should use one thread in each process.

--model_name is used to specify our model, including TransE_l2, TransE_l1, DistMult, ComplEx, TransR, RESCAL, and RotatE.

--dataset is used to choose a built-in dataset, including FB15k, FB15k-237, wn18, wn18rr, and Freebase. See more details about the built-in KG on this page.

--batch_size, --neg_batch_size is the hyper-parameter used for training sampler, and --batch_size_eval is the hyper-parameter used for the test.

--hidden_dim defines the dimension size of the KG embeddings. --gamma is a hyper-parameter to initialize embeddings. --regularization_coef is the hyper-parameter for regularization.

--lr is used to set the learning rate for our optimization algorithm. --max_step defines the maximal learning steps for the training task. Note that, the total steps in our training is max_step * num_proc. With multi-processing, we need to adjust the number of --max_step in each process. Usually, we only need the total number of steps performed by all processes equal to the number of steps performed in the single-process training.

-adv indicates whether to use negative adversarial sampling. It will weight negative samples with higher scores more.

--log_interval indicates that on every 100 steps we print the training loss on the screen like this:

[proc 7][Train](100/500) average pos_loss: 0.7686050720512867
[proc 7][Train](100/500) average neg_loss: 0.6058262066915632
[proc 7][Train](100/500) average loss: 0.6872156363725662
[proc 7][Train](100/500) average regularization: 8.930973201586312e-06
[proc 7][Train] 100 steps take 22.813 seconds
[proc 7]sample: 0.226, forward: 13.125, backward:

As we can see, every 100 steps will take 22.8 seconds on each process.

--test indicates that we will do an evaluation after training. It could print the following outputs to the screen:

training takes 37.735950231552124 seconds
-------------- Test result --------------
Test average MRR : 0.47615999491724303
Test average MR : 58.97734929153053
Test average HITS@1 : 0.28428501295051717
Test average HITS@3 : 0.6277276497773865
Test average HITS@10 : 0.775862944592101

testing takes 110.887 seconds

After training, we can see a new folder ckpts/TransE_l2_FB15k_0, which stores our training log and trained KG embeddings. Users can set --no_save_emb to stop saving embedding to the file.

Training on single GPU

Training knowledge graph embedding contains large numbers of tensor computation, which can be accelerated by GPU. DGL-KE can run on single-GPU, as well as the multi-GPU machine. Also, it can run in a mix-gpu-cpu environment, where the embedding data cannot be fit into GPU memory.

The following command trains the transE model on FB15k on a single GPU:

dglke_train --model_name TransE_l2 --dataset FB15k --batch_size 1000 --log_interval 1000 \
--neg_sample_size 200 --regularization_coef=1e-9 --hidden_dim 400 --gamma 19.9 \
--lr 0.25 --batch_size_eval 16 --test -adv --gpu 0 --max_step 24000

Most of the options here we have already seen in the previous section. The only difference is that we add --gpu 0 here to indicate that we will use 1 GPU to train our model. Compared to the cpu training, every 100 steps only takes 0.68 seconds on each Nvidia v100 GPU, which is much faster 22.8 second in CPU training:

[proc 0][Train](24000/24000) average pos_loss: 0.2704171320796013
[proc 0][Train](24000/24000) average neg_loss: 0.39646861135959627
[proc 0][Train](24000/24000) average loss: 0.33344287276268003
[proc 0][Train](24000/24000) average regularization: 0.0017754920991137624
[proc 0][Train] 100 steps take 0.680 seconds

Mix CPU-GPU training

By default, DGL-KE keeps all node and relation embeddings in GPU memory for single-GPU training. Therefore, it cannot train embeddings of large knowledge graphs because the capacity of GPU memory typically is much smaller than the CPU memory. So if your KG embedding is too large to fit into the GPU memory, you can use --mix_cpu_gpu training:

dglke_train --model_name TransE_l2 --dataset FB15k --batch_size 1000 --log_interval 1000 \
--neg_sample_size 200 --regularization_coef=1e-9 --hidden_dim 400 --gamma 19.9 \
--lr 0.25 --batch_size_eval 16 --test -adv --gpu 0 --max_step 24000 --mix_cpu_gpu

The --mix_cpu_gpu training will keep node and relation embeddings in CPU memory and perform batch computation in GPU. In this way, you can train very large KG embeddings as long as your cpu memory can handle it. While the training speed of mix_cpu_gpu training will be slower than pure GPU training:

[proc 0][Train](24000/24000) average pos_loss: 0.2693914473056793
[proc 0][Train](24000/24000) average neg_loss: 0.39576649993658064
[proc 0][Train](24000/24000) average loss: 0.3325789734721184
[proc 0][Train](24000/24000) average regularization: 0.0017816077976021915
[proc 0][Train] 100 steps take 1.073 seconds
[proc 0]sample: 0.158, forward: 0.383, backward: 0.214, update: 0.316

As we can see, the mix_cpu_gpu training takes 1.07 seconds on every 100 steps.

Training on Multi-GPU

DGL-KE also supports multi-GPU training, which can increase performance by distributing training across multiple GPUs. The following figure depicts 4 GPUs on a single machine and connected to the CPU through a PCIe switch. Multi-GPU training automatically keeps node and relation embeddings on CPUs and dispatch batches to different GPUs.

[image: _images/multi-gpu.svg]The following command shows how to training our transE model using 4 Nvidia v100 GPUs jointly:

dglke_train --model_name TransE_l2 --dataset FB15k --batch_size 1000 --log_interval 1000 \
--neg_sample_size 200 --regularization_coef=1e-9 --hidden_dim 400 --gamma 19.9 \
--lr 0.25 --batch_size_eval 16 --test -adv --gpu 0 1 2 3 --max_step 6000

Compared to single-GPU training, we change --gpu 0 to --gpu 0 1 2 3, and also we change --max_step from 24000 to 6000.

Users can add --async_update option for multi-GPU training. This optimization overlaps batch computation in GPU with gradient updates on CPU to speed up the overall training:

dglke_train --model_name TransE_l2 --dataset FB15k --batch_size 1000 --log_interval 1000 \
--neg_sample_size 200 --regularization_coef=1e-9 --hidden_dim 400 --gamma 19.9 \
--lr 0.25 --batch_size_eval 16 --test -adv --gpu 0 1 2 3 --async_update --max_step 6000

--async_update can increase system performance but it could slow down the model convergence. So DGL-KE provides another option called --force_sync_interval that forces all GPU sync their model on every N steps. For example, the following command will sync model across GPUs on every 1000 steps:

dglke_train --model_name TransE_l2 --dataset FB15k --batch_size 1000 --log_interval 1000 \
--neg_sample_size 200 --regularization_coef=1e-9 --hidden_dim 400 --gamma 19.9 \
--lr 0.25 --batch_size_eval 16 --test -adv --gpu 0 1 2 3 --async_update --max_step 6000 --force_sync_interval 1000

Evaluation on Pre-Trained Embeddings

By default, dglke_train saves the embeddings in the ckpts folder. Each runs creates a new folder in ckpts to store the training results. The new folder is named after xxxx_yyyy_zz, where xxxx is the model name, yyyy is the dataset name, zz is a sequence number that ensures a unique name for each run.

The saved embeddings are stored as numpy ndarrays. The node embedding is saved as XXX_YYY_entity.npy.
The relation embedding is saved as XXX_YYY_relation.npy. XXX is the dataset name and YYY is the model name.

A user can disable saving embeddings with --no_save_emb. This might be useful for some cases, such as hyperparameter tuning.

dglke_eval reads the pre-trained embeddings and evaluates the embeddings with a link prediction task on the test set. This is a common task used for evaluating the quality of pre-trained KG embeddings. The following command evaluates the pre-trained KG embedding on multi-cores:

dglke_eval --model_name TransE_l2 --dataset FB15k --hidden_dim 400 --gamma 19.9 --batch_size_eval 16 \
--num_thread 1 --num_proc 8 --model_path ~/my_task/ckpts/TransE_l2_FB15k_0/

We can also use GPUs in our evaluation tasks:

dglke_eval --model_name TransE_l2 --dataset FB15k --hidden_dim 400 --gamma 19.9 --batch_size_eval 16 \
--gpu 0 1 2 3 4 5 6 7 --model_path ~/my_task/ckpts/TransE_l2_FB15k_0/

Train Built-in Knowledage Graphs

DGL-KE provides five built-in knowledge graphs:

	Dataset

	#nodes

	#edges

	#relations

	FB15k

	14951

	592213

	1345

	FB15k-237

	14541

	310116

	237

	wn18

	40943

	151442

	18

	wn18rr

	40943

	93003

	11

	Freebase

	86054151

	338586276

	14824

Users can specify one of the datasets with --dataset option in their tasks.

Benchmark result

DGL-KE also provides benchmark results on FB15k, wn18, as well as Freebase. Users can go to the corresponded folder to check out the scripts and results. All the benchmark results are done by AWS EC2. For multi-cpu and distributed training, the target instance is r5dn.24xlarge, which has 48 CPU cores and 768 GB memory. Also, r5dn.xlarge has 100Gbit network throughput, which is powerful for distributed training. For GPU training, our target instance is p3.16xlarge, which has 64 CPU cores and 8 Nvidia v100 GPUs. For users, you can choose your own instance by your demand and tune the hyper-parameters for the best performance.

All the scripts can be found on this page. [https://github.com/awslabs/dgl-ke/tree/master/examples]

FB15k

One-GPU training

	Models

	MR

	MRR

	HITS-1

	HITS-3

	HITS-10

	TIME

	TransE_l1

	47.34

	0.672

	0.557

	0.763

	0.849

	201

	TransE_l2

	47.04

	0.649

	0.525

	0.746

	0.844

	167

	DistMult

	61.43

	0.696

	0.586

	0.782

	0.873

	150

	ComplEx

	64.73

	0.757

	0.672

	0.826

	0.886

	171

	RESCAL

	124.5

	0.661

	0.589

	0.704

	0.787

	1252

	TransR

	59.99

	0.670

	0.585

	0.728

	0.808

	530

	RotatE

	43.85

	0.726

	0.632

	0.799

	0.873

	1405

8-GPU training

	Models

	MR

	MRR

	HITS-1

	HITS-3

	HITS-10

	TIME

	TransE_l1

	48.59

	0.662

	0.542

	0.756

	0.846

	53

	TransE_l2

	47.52

	0.627

	0.492

	0.733

	0.838

	49

	DistMult

	59.44

	0.679

	0.566

	0.764

	0.864

	47

	ComplEx

	64.98

	0.750

	0.668

	0.814

	0.883

	49

	RESCAL

	133.3

	0.643

	0.570

	0.685

	0.773

	179

	TransR

	66.51

	0.666

	0.581

	0.724

	0.803

	90

	RotatE

	50.04

	0.685

	0.581

	0.763

	0.851

	120

Multi-CPU training

	Models

	MR

	MRR

	HITS-1

	HITS-3

	HITS-10

	TIME

	TransE_l1

	48.32

	0.645

	0.521

	0.741

	0.838

	140

	TransE_l2

	45.28

	0.633

	0.501

	0.735

	0.840

	58

	DistMult

	62.63

	0.647

	0.529

	0.733

	0.846

	58

	ComplEx

	67.83

	0.694

	0.590

	0.772

	0.863

	69

Distributed training

	Models

	MR

	MRR

	HITS-1

	HITS-3

	HITS-10

	TIME

	TransE_l1

	38.26

	0.691

	0.591

	0.765

	0.853

	104

	TransE_l2

	34.84

	0.645

	0.510

	0.754

	0.854

	31

	DistMult

	51.85

	0.661

	0.532

	0.762

	0.864

	57

	ComplEx

	62.52

	0.667

	0.567

	0.737

	0.836

	65

wn18

One-GPU training

	Models

	MR

	MRR

	HITS-1

	HITS-3

	HITS-10

	TIME

	TransE_l1

	355.4

	0.764

	0.602

	0.928

	0.949

	327

	TransE_l2

	209.4

	0.560

	0.306

	0.797

	0.943

	223

	DistMult

	419.0

	0.813

	0.702

	0.921

	0.948

	133

	ComplEx

	318.2

	0.932

	0.914

	0.948

	0.959

	144

	RESCAL

	563.6

	0.848

	0.792

	0.898

	0.928

	308

	TransR

	432.8

	0.609

	0.452

	0.736

	0.850

	906

	RotatE

	451.6

	0.944

	0.940

	0.945

	0.950

	671

8-GPU training

	Models

	MR

	MRR

	HITS-1

	HITS-3

	HITS-10

	TIME

	TransE_l1

	348.8

	0.739

	0.553

	0.927

	0.948

	111

	TransE_l2

	198.9

	0.559

	0.305

	0.798

	0.942

	71

	DistMult

	798.8

	0.806

	0.705

	0.903

	0.932

	66

	ComplEx

	535.0

	0.938

	0.931

	0.944

	0.949

	53

	RotatE

	487.7

	0.943

	0.939

	0.945

	0.951

	127

Multi-CPU training

	Models

	MR

	MRR

	HITS-1

	HITS-3

	HITS-10

	TIME

	TransE_l1

	376.3

	0.593

	0.264

	0.926

	0.949

	925

	TransE_l2

	218.3

	0.528

	0.259

	0.777

	0.939

	210

	DistMult

	837.4

	0.791

	0.675

	0.904

	0.933

	362

	ComplEx

	806.3

	0.904

	0.881

	0.926

	0.937

	281

Distributed training

	Models

	MR

	MRR

	HITS-1

	HITS-3

	HITS-10

	TIME

	TransE_l1

	136.0

	0.848

	0.768

	0.927

	0.950

	759

	TransE_l2

	85.04

	0.797

	0.672

	0.921

	0.958

	144

	DistMult

	278.5

	0.872

	0.816

	0.926

	0.939

	275

	ComplEx

	333.8

	0.838

	0.796

	0.870

	0.906

	273

Freebase

8-GPU training

	Models

	MR

	MRR

	HITS-1

	HITS-3

	HITS-10

	TIME

	TransE_l2

	23.56

	0.736

	0.663

	0.782

	0.873

	4767

	DistMult

	46.19

	0.833

	0.813

	0.842

	0.869

	4281

	ComplEx

	46.70

	0.834

	0.815

	0.843

	0.869

	8356

	TransR

	49.68

	0.696

	0.653

	0.716

	0.773

	14235

	RotatE

	93.20

	0.769

	0.748

	0.779

	0.804

	9060

Multi-CPU training

	Models

	MR

	MRR

	HITS-1

	HITS-3

	HITS-10

	TIME

	TransE_l2

	30.82

	0.815

	0.766

	0.848

	0.902

	6993

	DistMult

	44.16

	0.834

	0.815

	0.843

	0.869

	7146

	ComplEx

	45.62

	0.835

	0.817

	0.843

	0.870

	8732

Distributed training

	Models

	MR

	MRR

	HITS-1

	HITS-3

	HITS-10

	TIME

	TransE_l2

	34.25

	0.764

	0.705

	0.802

	0.869

	1633

	DistMult

	75.15

	0.769

	0.751

	0.779

	0.801

	1679

	ComplEx

	77.83

	0.771

	0.754

	0.779

	0.802

	2293

Train User-Defined Knowledage Graphs

Users can use DGL-KE to train embeddings on their own knowledge graphs. In this case, users need to use --data_path to specify the path to the knowledge graph dataset, --data_files to specify the triplets of a knowledge graph as well as node/relation Id mapping, --format to specify the input format of the knowledge graph.

The input format of users’ knowledge graphs

Users need to store all the data associated with a knowledge graph in the same directory. DGL-KE supports two knowledge graph input formats:

raw_udd_[h|r|t], raw user defined dataset. In this format, users only need to provide triplets and the dataloader generates the id mappings for entities and relations in the triplets. The dataloader outputs two files: entities.tsv for entity id mapping and relations.tsv for relation id mapping while loading data. The order of head, relation and tail entities are described in [h|r|t], for example, raw_udd_trh means the triplets are stored in the order of tail, relation and head. The directory contains three files:

	train stores the triplets in the training set. The format of a triplet, e.g., [src_name, rel_name, dst_name], should follow the order specified in [h|r|t]

	valid stores the triplets in the validation set. The format of a triplet, e.g., [src_name, rel_name, dst_name], should follow the order specified in [h|r|t]. This is optional.

	test stores the triplets in the test set. The format of a triplet, e.g., [src_name, rel_name, dst_name], should follow the order specified in [h|r|t]. This is optional.

udd_[h|r|t], user defined dataset. In this format, user should provide the id mapping for entities and relations. The order of head, relation and tail entities are described in [h|r|t], for example, raw_udd_trh means the triplets are stored in the order of tail, relation and head. The directory should contains five files:

	entities stores the mapping between entity name and entity Id

	relations stores the mapping between relation name relation Id

	train stores the triplets in the training set. The format of a triplet, e.g., [src_id, rel_id, dst_id], should follow the order specified in [h|r|t]

	valid stores the triplets in the validation set. The format of a triplet, e.g., [src_id, rel_id, dst_id], should follow the order specified in [h|r|t]

	test stores the triplets in the test set. The format of a triplet, e.g., [src_id, rel_id, dst_id], should follow the order specified in [h|r|t]

Distributed Training on Large Data

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_images/dgl_ke_arch.png
TranskE

TransR RotatE

DistMult

RESCAL ComplEx

DGL-KE

Platform Backend

DGL-KE Runtime

DGL Graph ‘ DGL Sampler ’ ‘ DGL KVStore

Pytorch

MXNet

GPU(s)

CPU Cluster

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 DGL-KE Documentation

 		
 Installation Guide

 		
 Install DGL

 		
 Install DGL-KE

 		
 Have a quick test

 		
 DGL-KE Command Line

 		
 Training on Multi-Core

 		
 Training on single GPU

 		
 Mix CPU-GPU training

 		
 Training on Multi-GPU

 		
 Evaluation on Pre-Trained Embeddings

 		
 Train Built-in Knowledage Graphs

 		
 Benchmark result

 		
 FB15k

 		
 wn18

 		
 Freebase

 		
 Train User-Defined Knowledage Graphs

 		
 The input format of users’ knowledge graphs

 		
 Distributed Training on Large Data

_static/up-pressed.png

_static/up.png

